
English Section

One of the most amazing and striking
application of technology in this
century is the impact of Internet on

the human society. During this period web
applications have tremendous growth rate
and touches almost all walks of life.
Introduction of Web 2.0 has facilitates and
allows increased user-creator interaction,
content syndication, advancements in web-
based user interfaces, which ultimately
lead to the creation of an entirely new
application platform.

Like any other technology, web
application also has its weakness. It
inherits the security vulnerabilities of open
Internet architecture. According to Pete
Lindstrom, Director of Security Strategies
with the Hurwitz Group, Web applications
are the most vulnerable elements of an
organization’s IT infrastructure today. An
increasing number of organizations depend
on Internet-based applications that
leverage the power of dynamic and rich
content mechanism (e.g., AJAX and
Flash). As this group of technologies
becomes more complex to allow the depth
and functionality discussed, and, if
organizations do not secure their web
applications, then security risks will only
increase. The most striking features of web
2.0 are its ability in harnessing collective
intelligence and bringing rich users
participation. The web 2.0 has rich
applications with features such as user
interaction, collaboration and real time
communication. To support the
synchronous communication AJAX is
widely used. Another popular technology
for motion picture of video in web space is
Flash. Flash also posses few critical
security vulnerabilities. If action script in
flash is not implemented properly, it can
compromise any web application. 

A careful analysis of potential attacks
against Web services as carried out e.g. by
Jensen et al. immediately shows that Web
services are very vulnerable especially
against DoS attacks. The security issues
which are inherent to the Ajax
programming model and which especially
affect cooperative application have been
extensively documented by Michael
Sonntag. In recent research it has been
shown that scripting vulnerability is higher
than any other web application
vulnerabilities.  It is getting sophisticated
day by day and should be addressed from
the early development cycles.
Types of Vulnerabilities and Attacks 

Current attacks come through many means
such as Server-side attacks (Traditional),
Browser & Plugin Flaws and Client-side

attacks (XSS, CSRF). Many of the current
vulnerability countering mechanisms address
one or few specific issues. 

Browser cache and history are intended
to be private in the normal stream, yet it's
not difficult for malicious Web sites to
"sniff" cache entries on visitors' computers
and then use that information to more
accurately deceive them. This leads to pose
a major un-resolving issue to the research
community.

On the Web, scripts embedded in
multiple browser windows containing
documents from the same Web site (same
domain name) are allowed to access data in
each other, in order to support multi
windowed user interfaces.  In an analysis it

has been revealed that browser windows
could be tricked into trusting at-tack scripts
from rogue sites, thus allowing them to
access their data. A rogue site could be set
up to track all Web-related activity of
visitors even after they had left the site,
using a Trojan-horse attack.

The tracking provided access to all data
typed into forms, including password fields,
cookies, and visited URLs. The data was
extracted right in the browser, so using a
secure encrypted connection to retrieve
documents didn't accord the user any extra
protection. This browser vulnerability has a
serious implication for Web users. Once
infected by the Trojan horse, the user's Web
interaction is fully exposed to the attacker -
every URL retrieved, all data typed into
forms - including credit card numbers and
passwords, all cookies set by servers
accessed etc.

The HTTP protocol supports a facility for
authenticating Web users. Many Web-based
services however use alternate methods of
authorization that provide more flexibility.
These methods involve the use of dynamically
generated, opaque "session keys" embedded
in URLs, in hidden fields of forms or in
cookies. The ability of the attack to access
such information in an HTML document
makes all of these authentication mechanisms
susceptible to compromise.

This browser vulnerability also has a
serious implication for intranets. Most
users use the same browser to access
information on the intranet as well as the
Internet. A user who has been ‘attacked’
using this vulnerability has essentially
compromised the renewal for the duration
of the browsing session the Trojan horse is
able to extract data from subsequently
loaded intranet documents and transmit it
to an external entity. Any data that the user
enters into forms - ID numbers, vendors
and prices, bug reports, passwords and
other proprietary information can be
relayed to the outside. 

ActionScript vulnerabilities are due to
various program flow calculating errors in the
verification/generation process. ActionScript
code is typically compiled into bytecode
format called ActionScript Byte Code (ABC).
The bytecode verifier is responsible for safety
check, making sure there is no type-unsafe
operations, stack underflow/overflow,
improper array accesses, etc.

Type confusion vulnerability exists in
Adobe Flash Player ActionScript Virtual
Machine. Specifically, the flaw exists in
the implementation of callMethod
bytecode command. The bytecode verifier
fails to detect the stack misalignment under
certain circumstances. An attacker can
exploit this vulnerability by enticing a user
to visit a crafted web page, open a crafted
PDF file or open a crafted Office
document; all of which may contain
malicious Adobe Flash content. Successful
exploitation would allow for arbitrary code
execution with the privileges of the
currently logged in user. KR

44 COMPUTER JAGAT JANUARY 2013

One of the solutions to combat
this security vulnerability is to use
HTML encoding. It can be used
either on user submitted data in the
view or it can be used on user
submitted data in the controller. 

Another solution could be a safe
interpreter. A safe interpreter has the
task of isolating scripts from
executing any unsafe commands
(those that could result in security
compromises if misused), thus
implementing what is called a
padded cell. The interpreter has to
implement access control with
respect to objects within the script's
own context. A safe interpreter has
to implement access control,
independence of contexts, and
management of trust among
different contexts. Provision for
these components does not realize a
particular security policy. Rather, it
gives a framework in which a
variety of security policies can be
easily implemented. 

Web 2.0 applications have
moved the Internet forward and
help fulfill the promise of more
interactive functionality and
community building. The open
nature of Web 2.0 presents
significant challenges to the
traditional enterprise approach to
controlling intellectual property and
proprietary content. However,
security is not usually considered.
The increase in functionality and
interactivity has increased the ways
in which an application can be
attacked successfully

Suggestion

JavaScript and Flash Pose a
Serious Threat to System Security
M J Morshed Chowdhury


